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Abstract. The seven pentagonal and the two icosahedral point groups that represent the 
symmetries of quasicrystals in hvo and three dimensions are expressed in terms of com- 
position series. Utilizing these series, eleven magnetic variants induced by the nine gen- 
erating point groups are derived. employing the concept of colour generators. Using a 
computed character to represent a magnetic property, the idea of factor groups contained 
in a composition series is explored to enumerate simultaneously the maximum number of 
non-vanishing and independent constants required to describe a chosen magnetic property 
for all the point groups involved in the composition series and such of the magnetic variants 
that may exist. The case of magnetoelectric polarizability is worked out in detail for two 
composition series. The piemmagnetic, pyromagnetic and magnetoelectric polarizability 
tensors for a11 twenty magnetic quasicrystal classes have been obtained and tabulated. The 
results of this study are briefly discussed. 

1. Introduction 

It is well known that the limitation to the crystallographic point groups is due to the fact 
that crystalsare solids with periodically arranged units, i.e. with translational symmetry. 
Compatibility between the translational symmetry and point symmetry of a crystal 
enforced that only those rotations or rotational inversions about an angle QI are allowed 
forwhich2cosq E {-2, -1,0,1,2)isheld.Thiswarrantsp, toassumeoneofthevalues 
0, h, 2?c/2, % / 3 , h / 4  or h / 6  only, the consequence being the existence of the so 
called 32 crystallographic point groups and 230 space groups. However, when the 
requirement of translational symmetry and hence the restriction of n to a certain value 
only is omitted, there are molecules with fivefold rotations and rotational inversions, 
some of whose symmetries were identified and reported in Brandmuller and Clauss 
(1988b). 

Although it was believed for some time that periodic crystals with pentagonal sym- 
metry (p' = h / S )  cannot exist, theoretical and experimental evidence (Levine and 
Steinhardt 1984, Schechtman eta[ 1984) confirmed that quasicrystals with such symmetry 
can and do exist. The theoretical work of Levine and Steinhardt (1984) onquasicrystals 
became of great interest to many solid state physicists. The idea of a crystal with periodic 
translational order was systematically extended by these researchers to quasicrystals 
with quasi-periodic order by replacing the translation order by a long-range bond 
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orientational order (BOO) with icosahedral symmetry. Following the discovery of 
Schechtmanite (Al%Mn14) with icosahedral symmetry by Schechtman et a1 (1984), there 
has been a tremendous burst of theoretical and experimental research activity towards 
understanding these structures (Gratias and Michel 1986, Mackay 1987). This cul- 
minated in the detection of many alloys exhibiting icosahedral phases similar to A1,Mn. 
Several models have been proposed describing the structure of the icosahedral alloys, 
otherwise known as quasicrystals-the multiple twinning of cubic cells (Pauling 1987), 
the icosahedral glass in which the icosahedral units are randomly packed in the same 
orientation (Stephens and Goldman 1986). the three-dimensional (3D) Penrose tilings 
(Ogawa 1986) etc. 

The successful attempts of Dubost et d (19%) and Bartges ef a1 (1987) to solidify 
AI,CuLi, quasicrystals; the discovery by Sen Gupta et al (1988) of optically active, 
transparent rare-earth pyro germinate (RE) quasicrystals: R,Ge,O, and thuliwn pyro 
germinate (TPG) with unique crystal-field potential m m2 (DSh) site symmetry are a few 
interesting recent additions to the class of quasicrystalline substances exhibiting 
pentagonal/icosahedral symmetry. In so far as the studies pertaining to the geometrical 
and physical properties of these materials are concerned, whereas Sasisekharan et al 
(1988) performed x-ray diffraction studies on AI,,CuLi, and confirmed its icosahedral 
symmetry, Sen Gupta et a1 (1988) calculated the crystal-field effects on the magnetic 
properties of the TPG and obtained expressions for magnetic susceptihility tensors under 
the crystal field of D,, symmetry. Brandmiiller and Clauss (1988a. b) have calculated 
the irreducible tensors of rank 1-4 (without intrinsic symmetries) for all the irreducible 
representations (IQ of the seven pentagonal point groups. These irreducible tensors are 
useful and necessary for interpreting the Raman and hyper-Raman scattering. Yi-Jian 
Jiang et a[ (1990) obtained the piezoelectric, elastic, photoelastic and Brillouin tensors 
for the seven pentagonal and two icosahedral point groups in two and three dimensions 
(2D and 3D). 

A good amount of theoretical understanding had been gained even before any 
quasicrystal was discovered. The Penrose tiling patterns of Penrose (1974) played a 
prominent role in the development of the theoryof quasicrystals. It has been established 
theoretically that a ID quasicrystal can be obtained by projecting a strip of a 2D square 
onto a ID space and a 3~ quasicrystal (of the Levine-Steinhardt pattern) can be obtained 
by projecting a slice of 6D lattice onto a 3D space (Conway and KnowIes 1986). 

In this article we derive the 11 magnetic variants induced by the seven pentagonal 
point groups S(C,),  S(S,,), i6(Cs,,), m2(Dsh), 52(D5), 5m(CSJ, 52m(D,,) and the 
two icosahedral point groupsU5(1) and (2/m) TS(Ih) and determine the piezomagnetic, 
pyromagnetic and magnetoelectric polarizability tensors for all 20 magnetic quasicrystal 
classes. The authors believe that such a study should lead to a better understanding 
of the quasicrystalline materials reported in the literature and should provide useful 
information towards the identification of new materials bearing the envisaged symmetry. 
This paper is organized as follows. In section 2, the seven composition series, which are 
just sufficient for generating the 11 magnetic variants, are constructed and tabulated. In  
section 3 we apply the results of section 2. T h e  method employed to induce the magnetic 
variants from a considered composition series is briefly explained and illustrated in 
section 3 with the help of two series. The magnetic variants obtained are tabulated 
employing a new notation also developed by these authors. The enumeration of inde- 
pendent constants required to specify a chosen magnetic property by each one of the 20 
magnetic quasicrystal classes is carried out in section 4 employing the group-theoretical 
method. The non-vanishing as well as the independent tensor coefficients obtained in 
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Table 1. Pentagonal and icosahedral point groups in terms of the chosen composition series 
and the distinct magnetic variants induced from them, 

Serial Distinct magnetic variants 
no Composition series induced from each series 

- 
1 - 10m235235131 _, 52'; # -, m'2 

10 ; 10 m'2' 2 
3 10m2 3 5m 3 5 3 1 5m';Z'm2' 
4 52m 3 5 2  3 5 3 1 5'2m' 

1Om2 3 IO 3 5  3 1 - 
- 

5 - 5 2 m J Z m 3 5 3 1  5' 2' m ~ 

7 (2/m) 35 3 235 3 I @/VI ' )  3 5 
6 5 2 m 3 5 3 5 3 1  5'; 5 2'_", 

respect of all three magnetic properties considered are presented in tables 4-6 (see 
later). The physicalsignificance involvedin the methodadoptedhereinfor the derivation 
of the magnetic variants as well as for the enumeration of magnetic constants is provided 
in section 5. Finally a brief discussion of the results obtained in this work is presented in 
section 6. 

2. Formulation of composition series 

It is well known that a series of the form G = Go 3 GI 3 G, 3 . . . 3 G, = {e} where 
G = G, is a group of finite order, G,, I is a maximal normal subgroup of G,, i = 1,2, . . . , 
and (s - 1 )  is called a composition series of the group G. Since G is a group of finite 
order, this process shall ultimately terminate with the group G, containing {E}. Because 
amaximalnormalsubgroupofagroupisnot unique, weobtainseveralsuch composition 
series for the group G under consideration. However, the factor groups Gj/Gi+, are 
unique but for isomorphism, and they need not occur in the same order. 

In what follows, the seven composition series, just sufficient for generating the 11 
magnetic variants which are induced by the seven pentagonal point groups and the two 
icosahedral point groups, are constructed and tabulated (table 1). Hermann-Maiiguin 
(international) notation is adopted for denoting the point groups in the various series. 
It can be observed that the seven pentagonal point groups are subgroups of either of the 
gfoups 3 m2 or3 2m and that the icosahedral point group 235 is a subgroup of ( 2 / m ) 3  
5. Furthermore, the point group 235 is not solvable, in that it has no non-trivial normal 
subgroup. In this paper, we contend that the alternating representation of the factor 
group Gi/G,+,, where Gitl is a subgroup of index 2 to the generating point group Gi, 
engenders an alternating representation of G;, which, in turn induces a magneticvariant 
of G;. The novel method of inducing the 11 magnetic variants is discussed briefly in 
section 3. 

3. The method of generating magnetic variants 

When an ordinary symmetry operation is applied on an arrangement of atoms in a 
molecule or crystal, although the geometrical structure may be brought into coincidence 
with itself, it may so happen that the orientations of some or all of the atomic magnetic 
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moments (spins) are changed. The anti-symmetry operation R2 was introduced into the 
realm of crystal physics to account for the reversal of the spins and bring the geometrical 
structure together with the spins into complete coincidence with itself. The introduction 
of R2 paved the way for the derivation of 58 magnetic point groups (Tavger and Zaitsev 
1956, Hammermesh 1962, Koptsik 1966, etc). These 58 magnetic groups together with 
the 32conventional generating crystallographic point groups constituted the90magnetic 
crystal classes. 

The magnetic group GI associated with the generating pentagonal or icosahedral 
point group G; is derived in this section from the maximal normal subgroup Gi, I of index 
2 of the group G; in the series considered. Thus GI is induced from G,+ by considering 
the semi-direct product of Gi+ I with the double colour group E; R 2 g ,  where g E G; is 
the generator that generates G, from G;, I and R2 is a colour-changing operation associ- 
ated with g to form the appropriate colour generator R,g. However if  the maximal 
normal subgroup Gi+ is of index greater than two, no magnetic group can be obtained 
for G; from G;,  ,. This is due to the fact that the order of g in such cases is not equal to 
twoand hence the incompatibility between theordersofR,andgin thecolourgenerator 
R2g. Furthermore, if the generating element g is the same in two different composition 
series for the considered group Ci, then no new magnetic variant GI is obtained for Gi 
from the later series. The remaining magnetic variants for G,, if any, shall be obtained 
by considering other composition series involving G; with the maximal normal subgroup 
G;+l = G,,,. 

The elegant method employed for the construction of the 11 magnetic variants 
induced by the nine generating point groups is exemplified now, with the help of two 
series-each involving pentagonal point groups and icosahedral point groups: 

K Rama Mohana Rao and P Hemagiri Rao 

(1) 
(7) 

~~~ ~ ~ 

-~ 
1 0 m 2 3 5 2 > 5 > 1 ~ ~ ~  
(2,") 35 > 235 2 1. 

Consider the series (1). Following the observation made earlier with regard to the 
incompatibility between the orders of g and R,, it can be seen that no magnetic variant 
can be generated from groups 1 to 5. The pentagonal point group 52 is generated from 
5 by C;. Hence the appropriate colour generator is R2Ci, where R: = E. The double 
colour groupgenerated by RzCi is E; R2Ci and the magneticgroup associated with 52 
is obtained by taking 5 A (E, R2Ci) = E, 2C5, 2C:, 5R,Ci. We denote this group by 
52'. The colour generator from 52 t o m  m2 is Rzuh andthe double d o u r  groupgenerated 
by this R2uh is E; RzUh. Thus 52 A (E, RzUh) = E, 2C2 2'2:. 5CiI RZUh, 2RzC~, 
2RzC:, - 5R2u, gives the magnetic variant induced by 10m2, which we denote as 
- lO'm'2. Thus from the considered series (l), we obtain two magnetic variants 52' and 
lO'm'2 and these are shown in column 3 of table 1. 

Since many quasicrystals show a global icosahedral symmetry as observed from 
diffraction patterns, we shall take up the icosahedral case with the series (7). The 
@-element icosahedral group 235 has no non-trivial normal subgroup and hence no 
subgroup of index 2. Following the remark made earlier, no magnetic variant can be 
induced for 235 from (1). However, since i generates (2/m)55 from 235,  the lone 
magnetic variant induced by (2/m) 35 is obtained as 235 A (E, R2i) = E, 12C5, lZC:, 
20C3, 15C2, R J ,  12R&, 12RzS;o, 20R& 15R,u. We denote this group by 
(2/m') ? 5'. The generation of the rest of the magnetic variants can be done in a similar 
way through identifying the generators and forming the appropriate colour generators. 
The variantsobtainedfrom the different seriesare shown in table 1. The actual elements 
constituting these magnetic groups are provided in table 2. 
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Table 2. Magnetic variants generated by the pentagonal and icosahedral point groups. 

Pentagonal/ 
icosahedral 
point group Magnetic 
G (in Hermann- Maximal variant (G') 

Serial Maiiguin normal induced 
no notation) subgroup byG Elements of c' 

- 
1 5  

2 10 

3 10m2 

4 10m2 

5 10m2 

6 52 
7 5m 
8 52m 

- 
- 
- 
- 

- 

5 

5 

IO 

52 

5m 

5 

- 

5 
5 
- 

5' 
-, 
10 

10 m' 2' 

10m'Z 

10 m2' 

52' 

- 

-, 

-, 

5m' 
5 2' m' 
- 

. . . .. . .. . 

E. 2Cs. 2CZ. 5C1. Rluh. 2R& 
2R2S:. 5R2u, 

4. Enumeration of magnetic constants 

The development of the concept of quasicrystals has challenged many widely held 
assumptions of crystallography and solid state physics. The discovery of icosahedral 
phases in metallic alloys has compelled theorists to reconsider several assumptions and 
to confront many new problems. Thus quasicrystals present a fundamental challenge 
to theoretical physicists to re-examine traditional concepts and devise methods for 
determining their physical properties. In this section we obtain the number of inde- 
pendent magnetic constants (n,) needed by the 20 magnetic quasicrystal classes, in 
respect ofthe three known magneticproperties: (i) piezomagnetism, (ii) pyromagnetism 
and (ii) magnetoelectric polarizability. 

A physical property is referred to as a magnetic property if either or both of the 
involved physical quantities is a magnetic field, magnetic induction or magnetic moment. 
Thus piezomagnetism is the appearance of magnetic moment M (M,, i = 1,2 ,3)  by the 
application ofstress U. Similarly, pyromagnetism is the appearance of magnetic moment 
M (M,, i = 1,2,3)ontheapplicationoftemperature tandmagnetoelectricpolarizability 
is the production of a magnetic field H (or E )  on the application of an electric field E (or 
H) in a direction normal to it. The characterX(R,) corresponding to a symmetry element 
R, in the representation provided by each one of the three aforesaid magnetic properties 



6002 

(Bhagavantam 1966) is: 
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511 - 
A 
'E' 
'E' 
'E" 
'E" - 

~ , , (R , )= (4cOs~q  22COsq)(l k2COSq) 

,ya(R,) = (1 2 2 c o s p )  

&(R,) = (1 f 2cosp,)(21 f 2Cosq). 

, , ,... , ,  , ,,.,I.,, , .,.,.,,,, .,,..,, -. 

E cs C: c, e: ni 

1 1 I 1 1 3 
1 W W 2  W' 0' 

1 W *  wJ W1 W 

1 w2 w4 W W J  

1 w3 w W +  wz 

p- - 

p- . 

(4.1) 

In equations (4.1), the + or - sign is to be chosen according to whether the symmetry 
operation R, under consideration is a pure rotation or rotation reflection through an 
angle q . 

The simple and elegant group-theoretic method, based on the concept of the factor 
groups contained in a composition series for obtaining simultaneously the number 
of independent constants (3 required to describe a chosen magnetic property by a 
generating point group and its magnetic variant (if any) is outlined hereunder, with the 
help of the IRS of the factor groups G,/G,+I contained in a composition series. The 
desired number of magnetic constants (n,) is determined by utilizing the definition of the 
character of a coset: for the magnetic (physical) property considered and applying the 
known formula (Bhagavantam and Venkatarayudu 1951): 

(4.2) 

.' Foran) m~gnct.corph)i~cslproperi).iheclt~racterofacosei~l H,.- l .E ( C ' ~ t n i h e f a . c t o r g r o u p G H i r  
defined AS the ~ lgcbr31c  rum 01 the chsracien of all the clemenis contamed .n tn:ji cosei in re spec^ of that 
mage1.c (ph!atcsl) properi) d.rldeJ 0 )  the order oi thdt cosei 
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The factor group 5/1 does not contain a I D  alternating IR.  As such, 5 does not induce a 
magneticvariant. Puttingh, = 1, xbr" = 1 Vp andsubstituting the valuesofxb'] in (4.2), 
we find that group 5 requires three magnetoelectric polarizability constants. 

The character table of the factor group 52/5 is: 

- 
10 my52 52 ah 52 

*' B' j : 

n:' 

- 1  1 . ;  

23511 

A 
T, 
T2 
G 
H 

E 15C2 20C3 12Cs I zc?, n, 

1 1 1 1 1 1 
3 - 1  0 I - r - l  

3 - 1  0 
4 0 1 -1 - 1  
5 I - 1  0 0 

r 

From the above table, by a reasoning similar to that given earlier, we find that the 
pentagonal class i6 m2 and its magnetic variant q m ' 2  require zero and two mag- 
netoelectric polarizability constants respectively. Thus the point groups 5 ,  52 and 
10m2 contained in the series (1) require respectively three, two and zero constants, 
whereas the associated magnetic variants 52' and lO'm'2 need one and two constants 
respectively to describe the magnetoelectric polarizability behaviour, 

' Theicosahedralcaseisnowillustratedwith thehelpoftheseries(7).Thepointgroup 
235 is a 60-element simple group with five conjugacy classes. The character table of the 
group 235/1 = A,, the alternating group on five symbols, is: 

3 + v s  3-v5 
,YrJ I 1  9 0 - 2 - I  2 

I I 
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From the above table one finds that the group 235 requires only one magnetoelectric 
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polarizability constant. 
Since (2 /m)  3 3 = 235 U i 235, the character table of (2/m) 3 3/U5 becomes: 

(2/m)??/235 I 235 i 235 I n: 

A' 
B' 

From this table it follows that the group (2/m)35 and its magnetic variant 
(2/m') 3 5 need zero and one constants respectively for the description of mag- 
netoelectric polarizability. 

Results obtained for the rest of the composition series of table 1 for the illustrated 
magnetic property and for all the series in respect of the other two magnetic properties 
are presented in table 3. The non-vanishing and independent tensor components in 
respect of each one of the twenty magnetic classes and for all the three considered 
magneticpropertiesareidentifiedfoUowingthemethodofBhagavantam(1966) andNye 
(1985). These tensor components are calculated by solving the simultaneous equations, 
which arise when imposingthecondition that the tensorsareinvariant under theelements 
of these respective magnetic classes. For the sake of brevity, we omit the somewhat 
lengthy calculations and present only the final results in tables 4 , s  and 6 .  

- , - I  

Table 3. The number of independent constans (n,) required to describe the three magnetic 
properties of the 20 magnetic quasicrystal classes. 

Pentagonal/ Magnetic Number of magnetic constants required 
icosahedral variant G' -. . . .. . . . 
point group induced Magnetoelectric 

No G (if any) by G Piezomagnetism Pyromagnetism polarizability 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

5 
5 
- 
- 
10 

IO m2 
- 

52 

5m 

5 2 m  
- 

735 
(2/m) 53 

- 
IOm'2' 
10 m'2 
10 m2' 

-, 
-8 

52' 

5m' 

- 
5 2'm' 
52" 
-I 

5' 2'm 

0 
1 
3 
0 
0 
I 
3 
1 
3 
1 
3 

I 
1 
0 
1 
0 
0 
1 
0 
0 
0 
1 
0 
1 
0 
1 
0 
0 
0 
0 
0 

3 
0 
3 
0 
3 
0 
0 
2 
1 
2 
I 
1 
2 
0 
0 
2 
1 
1 
0 
I 
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Table 4. Piezomagnetic tensors for the 20 magnetic quasicrystal classes. 

Magnetic quasicrystal class Piezomagnetic tensor 

0 0 0' 0 0 0 (0) 
-? 

IO m2',5'2", 
0 - 0 0 0  0 0  

-, -I 

10 .5  ,235. (2/m)55. 

Table 5. Pyromagnetic v e c t ~ n  for the 20 magnetic quasicrystal classes. 

Magnetic quasicrystal class Pyromagnetic vector . 
5,5,Z,52', 5mr,52'm'. mm'2' q3 (1) 

52,Sm, iLd, S?, ?' %-I -, 0 
-I 

10 m2'. 10 "2 .5  2". 10 , 5  

Table 6. Magnetoelectric polarizability tensom,for the 20 magnetic quasicrystal classes 

Magnetic quasicrystal class Magnetoelectric polarizability tensor 

5,T.B' 
0 
0 
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5. Significance of the method 

The derivation of magnetic symmetry groups and the enumeration of the number 
of independent magnetic constants employing the composition series technique has 
significance. This can be realized if the magnetic symmetry classes, generated here from 
various point groups G,, I in the series, are associated with the appropriate alternating 
IR of the group C,. In the little-group technique (Bhagavantam and Venkatarayudu 
1951). it can be seen that, for the total symmetric IR r of the normal subgroup H (here 
the maximal normal subgroup G,+,)* the little group L (Gi, G,,,, r) always coincides 
with Giitself and the kernel ( k )  coincides with Git ,-and thus L / k  = Gi/Gi+,. Since the 
IRs  of the factor group Gi/Gi+, engender those of the IRS of~the same nature as Ci, the 
choice of Gjt , facilitates the calculation of the required IR of Gi to be engendered. For 
example, in the case of the point group G = 52, Gi+, = 5,  the little group L (52,5, A) = 
52 and k = 5. It can be seen that the alternating IR B’ of the factor group 52/5 engenders 
the alternating IRA,  of 52. As 52’ is generated from G;,, = 5 in the composition series 
and since the alternating IR B’ of 52/5 in turn engenders the alternating,IRAz of 52, the 
magnetic variant 52’ may be associated with the 1R A, of 52. A similar interpretation 
holds for the remaining ten magnetic variants generated in section 3. 

It has already been established (Rama Mohana Rao 1987) that the number of 
independent constants required to describe a magnetic property and appearing before 
ani~pofthefactorgroup CIHisequal to the numberofindependentconstantsrequired 
by the corresponding coloured/uncoloured group of G induced by the IR A of G,  where 
the I R A  of G is engendgred by the I R ~  of G/H.  Thus the process involved in the group- 
theoretic method, employed in this paper for enumerating the maximum number of 
non-vanishing and independent magnetic constants required for all the point groups 
involved in the composition series and such of the magnetic variants that may exist, has 
interesting physical significance. 
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6. Discussion 

The idea of a colour generator, obtained by associating a double colour operation Rz to 
the generatorg E Gi from G,,, to Gi in the series, where G,,, is a subgroup of index 2 
to Gi, is employed for the derivation of the magneticvariant induced by G,. This method 
avoids considering each one of the generating point groups separately for the purpose 
of inducing its magnetic variants. 

The nine generating point groupsconsidered in this work are the quasicrystal sym- 
metry groups in two and three dimensions. The number of non-vanishing and inde- 
pendent constants (n,) required by the generating point group, together with such of the 
constants required by its induced magnetic variant, are obtained here for each one of 
the three magnetic properties considered, by considering the appropriate IRS of the 
factor group G,/G,+, in the series and by invoking the definition of the character of a 
coset and the formula (4.2). The advantage of the method lies in that the n, needed for 
a chosen magnetic property for the generating point group G, as well as its induced 
magnetic variant GI if any, can be obtained simultaneously; they need not be calculated 
separately. 

The physical significance of the number of independent magnetic constants (nJ 
appearing before the alternating I R  of the factor group G,/C,+, emerges here, when the 



Magnetic symmetry in quasicrystals 6007 

magnetic variant G' of G is regarded as being induced by the alternating IR of GIN. A 
similar interpretation can be extended to the other physical properties as well. 

It is interesting to note that, in so far as the ni are concerned, the 20 magnetic 
quasicrystalline classes divide themselves into different sets, with the classes contained 
in each set requiring the same ni. Whereas for the piezomagnetism and magnetoelectric 
polarizability the 20 classes separate into four and five sets respectively, for pyro- 
magnetism they separate into only two sets. Also, from tables 3 and 4, it can be seen 
that - the quasicrystals whose symmetries belong to the nine magnetic classes 5'; m; 
10"'2, "2'; 5'2m', 5'2"; 235; (2,") 35, (2/&')? 5' induced respectively by the 
sixpointgroups5,10,10 m2,32m. 235, (2/m)~~in'eachofwhich thecentreofinversion 
(or reflection) has the character -1, do not require any piemmagnetic coefficients for 
their description. This is due to the fact that piezomagnetism is a centro-symmetric 
property and its coefficients are representedby axial tensors of odd rank. 

The unique symmetries of quasicrystals play a central role in any discussion of their 
geometrical and physical properties. As such, group-theoretical methods underly much 
significance in the realm of quasicrystalline physics. The results presented in this paper 
are obviously theoretical. As such their utility in, serving as valuable checks in the 
experimental determination of physical properties of any quasicrystal-we believe- 
will help further theoretical and laboratory studies in this relatively recent branch of 
science. 
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